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Liquid crystalline fractals: dilatation invariant growth structures
in the phase ordering process of ‘banana-phases’

INGO DIERKING

Department of Physics and Astronomy, University of Manchester,
Schuster Laboratory, Oxford Road, Manchester, UK M13 9PL;

e-mail: dierking@reynolds.ph.man.ac.uk

Fractal growth structures are known to be exhibited by numerous systems in condensed
matter physics, mostly forming under non-equilibrium conditions. Materials of the ‘soft
condensed matter’ class, including colloids and polymers, are especially rich in fractal growth
phenomena. It thus seems surprising that only very few reports on fractal structures in liquid
crystals have been given. The likely reason is that conventional calamitic liquid crystals do
not exhibit fractal growth aggregates. In contrast, the recently reported bent-core molecules,
constituting the so-called liquid crystalline ‘banana-phases’, do in fact undergo a phase
ordering process via aggregates of fractal dimensionality. In this paper the phase ordering
process from the isotropic liquid to the liquid crystalline state, as well as the transition from
the liquid crystal to the crystalline state, is characterized in terms of fractal dimensions of
growth aggregates. Systematic investigations of the phase formation process of different
‘banana-phases’ as a function of time, aggregate size, cell gap, quench depth and quench rate
suggest a general phase ordering process via a percolation mechanism.

1. Introduction formation processes in ‘soft condensed matter’, especially
colloids and polymers on the other hand often leadFractals have long been known to mathematicians,

but were largely disregarded until the first coherent to very complex structures, which may be described by
fractal geometry and the obtained fractal dimension inconcept of fractal geometry and its usefulness in the

description of complex natural structures was triggered turn can be related to simple generic growth models.
A classic example of such a growth model is theby the classic work of Benoit Mandelbrot [1] in the

early 1980s. Since this time fractal geometry has success- diVusion limited aggregation (DLA) model introduced
by Witten and Sander [9], which describes well forfully been employed in many areas of science ranging

from physics, chemistry and material science all the way example the growth of aggregates observed in electro-
deposition experiments [10]. A general algorithm forto biology, engineering and geology. It is particularly

useful for the description of various processes of pattern respective computer simulations is as follows: (i) a seed
particle is set at the origin of a lattice and (ii) a particleformation, growth and aggregation, especially in complex

and disordered systems far from equilibrium. Examples far from the origin performs a random walk until it
meets the seed and sticks (with a certain probability) torange from electro-deposition, dielectric breakdown,

viscous fingering, branched growth, crack propagation form an aggregate. Step (ii) is repeated for many times
to obtain a growing aggregate. The resultant structureor various percolation systems to retina nerve cells and

growth of bacteria colonies, just to name a few. Excellent is rather complex and fractal analysis yields a fractal
dimension in the order of D=1.7 in two-dimensionaloverviews have been given by Bunde and Havlin [2, 3],

Vicsek [4], Meakin [5] and Kaye [6]. space. This model also seems to describe many aspects
of dielectric breakdown, not only in gases [11], commonGrowth and coarsening in the process of phase

formation of condensed matter systems have long been liquids (often oils) [12, 13] or polymer foils of capacitors,
but also in liquid crystal Hele–Shaw cells [14]. Notestudied experimentally as well as theoretically [7, 8], for

example in condensation, crystallization, tempering of that in the model of diffusion-limited aggregation time
is not defined, i.e. dynamic aspects of the aggregationmetal alloys or the phase separation of binary fluids. It

has been shown that these processes generally follow process cannot be studied.
Another growth model is that of cluster–clustersimple scaling laws of the form L (t)~tn, where L is a

characteristic length, t the time and n a universal growth aggregation (CCA), introduced by Meakin [15]. Here
we do not set a seed particle, but rather have manyexponent, which depends on the general class of systems

studied (conserved order parameter (COP) or non- particles perform a random walk simultaneously. When-
ever particles meet, they stick together (again with aconserved order parameter (NCOP) systems). The phase
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2 I. Dierking

certain probability) to form clusters which further per- 2. Experimental
Subjecting a conventional calamitic liquid crystal toform a random walk until eventually all particles are

part of one single aggregate. This model is often used a rapid temperature quench below the clearing point,
i.e. a quench from the isotropic phase into the liquidto describe the aggregation of colloids [16] or, suit-

able as a classroom demonstration, the aggregation of crystal temperature range, results in a metastable situ-
ation at isothermal conditions with the high temperaturewax spheres floating on water [17]. In contrast to the

DLA model, here time is indeed well defined. The CCA isotropic phase having a larger free energy F than the
low temperature liquid crystal phase. Due to thermalmodel may also describe the formation of the loosely

cross-linked polymer beads observed in some polymer- fluctuations liquid crystalline nuclei are formed, which
grow spontaneously once a critical nucleus radius isstabilised liquid crystals (PSLCs) for monomer con-

centrations close or above the solubility limit [18]. exceeded. In the case of the isotropic to nematic or
cholesteric transition, these nuclei are often sphericalThe fractal dimension of CCA clusters generally varies

between D=1.6 and 1.8, depending on the sticking as shown in figure 1 (a). For the isotropic to smectic
transition the well-known bâtonnets are usually observed,probability and other details of the employed computer

simulation. as exemplarily depicted in the texture photograph of
figure 1 (b). In both cases the individual aggregates exhibitFinally, percolation models account for a variety

of different growth structures [19, 20], ranging from a Euclidean dimension of D=2 in two-dimensional
space. (Most phase-ordering experiments with liquidsystems like ink spreading in absorbing paper, water

being pushed through compressed sand, or the spread crystals in sandwich cells can effectively be regarded as
being two-dimensional, because the cell gap of the orderof epidemics and forest fires. The growth model involves

(i) setting a seed particle at the origin of a lattice with
all nearest neighbours being ‘alive’, i.e. being lattice sites
which can be occupied; (ii) the ‘alive’ sites are occupied
with a probability p which are then part of the growing
cluster, or ‘killed’ with a probability 1−p; (iii) the new
nearest neighbours are then ‘alive’ and steps (ii) and (iii)
are repeated many times to form a growing aggregate.
Two-dimensional percolation clusters at the percolation
threshold, i.e. clusters spanning throughout the whole
sample, have a fractal dimension in the order of D=1.9
(D=1.89 from theory). Growth is governed by local
interactions. An example from liquid crystal research
may be the formation of polymer networks by photo-
polymerisation of reactive monomers in PSCTs at
concentrations well below the solubility limit [18].

Having given a variety of examples for fractal growth
structures in different soft matter materials and their
respective generic growth models, it seems surprising
that only very few reports have been published that
relate fractal geometry to liquid crystals. One such report
gave an estimation of the fractal dimension of a single
dendritic-like texture of a discotic columnar hexa-
gonal phase [21], but no investigations concerning the
actual growth process were carried out. Saffman–Taylor
instabilities [22] in liquid crystal Hele–Shaw cells
exhibit similar patterns for viscous fingering [23–25],
although these structures are not related to a phase
ordering process. Other investigations describe fractally
homogeneous distributions of nuclei [26, 27] and topo-

(a)

(b)
logical defects [28, 29] in nematic liquid crystals during

Figure 1. Growth patterns of conventional calamitic liquidphase ordering and coarsening, respectively. This paper
crystals: (a) at the isotropic to cholesteric and (b) at the

presents a summary of detailed investigations into the isotropic to smectic A transition. (The textures are
fractal aspects of liquid crystal phase ordering in reproduced from: D, I., 2003, T extures of L iquid

Crystals (Weinheim: Wiley-VCH).)bent-core molecules.
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3L iquid crystalline fractals

of a few micrometres is much smaller than the grow- region of approximately 3 K at the isotropic to liquid
crystal transition, which is quite common for bent-coreing nucleus, while the cell extension in perpendicular

directions can be regarded as infinite.) The growth mesogens and may be attributed to impurities. Two
separate phase-ordering processes were investigated: theprocess of the nematic/cholesteric spherical nuclei can

be described by the above-mentioned universal growth isotropic to liquid crystal B2 transition and the liquid
crystal B3 to crystal B4 transition. All measurementslaw L (t)~tn [30, 31] with L representing the nucleus

diameter. Experimentally, the growth exponent is found reported below were reduced to the respective phase-
transition temperature by introducing the quench depthto be n=1/2 for vanishing quench depth (thus DF#0)

and approaching n=1 for large quench depths [32–34], DT as a relevant parameter. The isotropic–B2 transition
temperature was taken as the temperature at which thein accordance with theoretical predictions [8, 35]. The

growth of smectic bâtonnets is obviously anisotropic, first liquid crystalline nuclei were observed on very slow
but choosing the long and the short bâtonnet axis as a cooling, while the B3–B4 transition is rather sharp. The
characteristic length L , it has been shown that these still accuracy of relative temperatures is estimated to be
follow the above universal growth laws [36]. better than 0.1 K.

The phase-ordering process of the ‘banana’ liquid For the investigations of the isotropic–B2 phase
crystal phases is qualitatively different. We do not observe ordering process, digital images were recorded by a
nuclei of a regular geometric shape as those of the microscope-mounted video camera (Sony Hyper HAD
calamitic phases (figure 1), but rather complex structures, model SSC-DC38P) at an image size of 768×576 pixels,
growth aggregates of very irregular shape (figure 2), which corresponding to a sample size of 1080mm×820mm.
suggest a description by methods of fractal geometry, as The general experimental conditions were chosen as
was also noted in [37]. follows: cell gap d=3mm, quench depth DT=0.3 K and

The compound investigated is that of the first bent- quench rate R=3 K min−1. The results for the different
core mesogen reported by Sekine et al. [38], which has investigation series presented below were obtained by
the structural formula shown below: varying only the respective parameter, leaving other

conditions unchanged. For the B3–B4 transition, images
were recorded at a resolution of 720×540 pixels, corres-
ponding to a sample size of 640mm×490mm. Experimental
conditions were as follows: cell gap d=2mm, quench
depth DT = 0.5 K and quench rate R= 3 K min−1.
Specific parameters were changed for the each of the

For the studies presented here the phase-transition tem-
different investigations undertaken.

peratures were determined by polarising microscopy
Time-dependent fractal dimensional analysis was

(Nikon OPTIPHOT2-POL, Leitz Orthoplan) on very
carried out with BENOIT 1.3 from TruSoft International.

slow cooling (Mettler FP52, FP82 hot stages) in com-
Several different methods were employed, which all gave

mercially available sandwich cells (E.H.C, Japan) of
comparable values for the fractal dimensions.

varying thickness. The phase sequence in °C is given by
1. T he box dimension method. The fractal dimension

Iso. 169 B2 150 B3 145 B4 (with B4 being a crystalline
Db is defined as the exponent in the proportionality

phase). Transition temperatures were slightly dependent
on cell gap and the compound showed a two-phase

N(d)~
1

dD
b

(1)

with N(d) as the number of occupied boxes of side
length d being occupied by the data set. An illustrative
example is depicted in figure 3 (a) for a single growth
aggregate, giving a fractal box dimension of Db=1.86.
For a Euclidean object like a sphere or a square,
equation (1) gives Db=2.

2. T he information dimension method. This method is
very similar to the box dimension method, except that
the information dimension method weights the occupied
boxes according to their object pixel content. The fractal
dimension D

i
is defined from the proportionality

Figure 2. Typical texture of a banana B2 phase growing from
the isotropic melt. I(d)~−D

i
log (d) (2)
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4 I. Dierking

(a) (b)

(c)

Figure 3. Illustration of the application of methods to determine fractal dimensions related to the covered cluster areas of objects:
(a) the box dimension method giving Db (equation (1)); (b) the information dimension method giving D

i
(equation (2)); and

(c) the mass dimension method giving D
m

(equation (4)).

with obtained. Again, a Euclidean object would give a fractal
dimension of D

i
=2.

3. T he mass dimension method. This method is oftenI(d)=− ∑
N(d)

i=1
m
i
log (m

i
) (3)

employed for radially symmetric objects (as in dielectric
breakdown). The fractal dimension D

m
is defined fromwhere m

i
=M

i
/M, with M

i
the number of points in the

ith box andM the number of total points in the data set. the proportionality
Generally D

i
�Db and the quality of the digital image

m(r)~rD
m

(4)
being analysed can be judged by the difference between
Db and D

i
. If the image contains a large number of ‘stray with m(r)=M(r)/M the ‘mass’ within a circle of radius

r, where M(r) is the data set points contained within apixels’, Db may be (considerably) smaller than D
i
(by a

factor of up to DD#0.1) and in this case the information circle and M the total number of points in the set. In
the ideal (mathematical ) case D

m
=Db . The mass dimen-dimension method provides the more reliable results.

The method is demonstrated in figure 3 (b), analysing sion method is employed in figure 3 (c) for the same
aggregate as above, and yields D

m
=1.91.the same single aggregate as above and D

i
=1.89 is
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5L iquid crystalline fractals

The time-resolved fractal analysis of liquid crystalline
B2 growth aggregates forming from the isotropic melt
was in each case carried out by minimization of the
standard deviation SD of a linear fit to a log–log plot
according to equations (1), (2) and (4) to SD<0.001.
For each image the box, respectively radius size, was
varied over more than two orders of magnitude, resulting
in variations of the dependent variable over more than
four orders of magnitude. The linear regime from which
the fractal dimensions were determined covered at least
one order of magnitude in box or radius size. For reasons
of clarity, the results given below represent the average
(Davg ) of the three fractal dimensions Db , Di and D

m
with

the error bars indicating the range of confidence.
The above fractal dimensions are related to the covered

cluster area, the so-called ‘mass’ of an object. For the
studies related to the liquid crystal to crystal transition
(B3–B4), we also investigated single growing aggregates
(‘islands’ or ‘closed loops’), for which further fractal
dimensions can be determined, which are related to the
perimeter of the cluster. These are as follows.

(a)

(b)
4. T he area–perimeter method. This relates the area A

Figure 4. Illustrations of the application of (a) the area–of a closed loop to its perimeter P by the dimension Dp , perimeter dimension method and (b) the ruler dimensionwhich is defined from the proportionality
method to determine the fractal dimensions related to the
perimeter of an object resembling a closed loop yieldingA~P2/D

p
(5)

Dp (equation (5)) and Dr (equation (6)), respectively.

An illustrative example of this method is shown in
figure 4 (a) for the above single aggregate, giving Dp=1.53. 3.1. T he isotropic–liquid crystal B2 transition

The first phase-ordering process studied is that fromEuclidean objects have a dimension of Dp=1.
5. T he ruler method. The ruler dimension Dr is related the isotropic to the liquid crystal B2 phase, of which an

example is given in supplemental video 1† (note that thesolely to the perimeter of an object. It is defined from
the proportionality video merely illustrates the growth process and that it

does not represent its real time dynamics). In the video
M(l)~ l−D

r
(6) ‘white’ (birefringent) liquid crystal aggregates are grow-

ing within the sea of the ‘black’ isotropic phase. Whenwith M(l ) being the number of steps a ruler of length l
investigating fractal growth phenomena, it first has tohas to be taken around the perimeter of an object, which
be shown that the structures studied do in fact exhibithas to be a closed loop. The ruler method is demon-
dilatation or scale invariance. This is demonstrated instrated in figure 4 (b) and gives Dr=1.27 for the above
figure 5, where five aggregates of different size, rangingaggregate. If the perimeter is Euclidean, the ruler dimen-
from approximately 50 to 1100mm (the whole texture),sion is Dr=1. Also the latter two fractal dimensions were
were analysed with respect to their fractal dimensionsdetermined by minimization of the standard deviation
by methods 1 through 3. The average fractal dimensionof a linear fit to a log–log plot to SD<0.001.
Davg for all aggregates is practically constant, thus
demonstrating dilatation invariance over more than one

3. Experimental results and discussion order of magnitude in cluster size. Note that for this
This paper summarizes results obtained from the investigation the phase-ordering process was not com-

investigations of isothermal growth of aggregates of a pleted (t#20 s) and that the fractal dimensions given
low-temperature phase after a rapid temperature quench are not the saturation values. The actual time develop-
below the phase-transition temperature from a high- ment of the fractal dimension during the isothermal
temperature phase of bent-core molecules. This is namely phase-ordering process is depicted in figure 6 for an
the liquid to liquid crystal transition (iso.–B2) and the analysis of the whole texture image. A sharp increase of
liquid crystal to crystal transition (B3–B4). For a more
detailed account of the investigations the reader is †Please see the Supplemental Materials section to download

this video.referred to references [39–42].
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6 I. Dierking

clusters have the same fractal dimension, which stays
constant and does not change even during coalescence
[40].

Let us now examine the dependence of the average
fractal dimension Davg of growth aggregates on various
parameters of the phase-ordering process, namely the
quench depth DT and the quench rate R, but especially
also the dependence on sandwich cell gap d, in order to
clarify whether fractal growth is an intrinsic property of
banana-phases, or if it is just a surface-mediated effect,
induced by interactions between the liquid crystal and
the substrates of the cell. The latter is an interesting
question, because it is well known that banana-phases
exhibit great resistance to any of the common orientation
techniques employed for calamitic nematic or smectic
liquid crystals. This includes planar as well as homeo-
tropic anchoring conditions, temperature cycling and tem-

Figure 5. Average fractal dimension Davg for five different perature gradients, electric field treatments, mechanical
growth aggregates in the size range between 50 and

shear or combinations thereof.
1100 mm (whole texture), illustrating self-similarity.

Figure 7 (a) shows the dependence of the saturation
value of the average fractal dimension Davg as a function
of quench depth DT . This is found to be basically
independent of quench depth at a value of Davg=1.88,
possibly only slightly decreasing with increasing quench
depth. For quench depths larger than DT>0.6 K iso-
thermal growth could no longer be assured. A more
detailed description of the time dependence of the box
dimension Db as well as the quench depth dependence
of the box dimension Db , the information dimension D

i
and the mass dimension D

m
can be found in reference

[40].
Also the quench rate R, i.e. the rate of temperature

change to reach a certain quench depth, has no influence
on the saturation value of the average fractal dimension
obtained, which is again found to be in the order of
Davg=1.89 (figure 7 (b)). This is behaviour that one would
intuitively expect, because the actual phase-ordering

Figure 6. Time development of the average fractal dimension process still proceeds under isothermal conditions. For
Davg during the B2 phase-ordering process.

quench rates larger than R>10 K min−1 the passive
cooling of the used hot stages no longer allowed reliable
measurements to be obtained under isothermal con-
ditions. Again, time-dependent measurements and detailsthe average fractal dimension is observed for short times

up to approximately t#30 s, which then quickly saturates for different fractal dimension methods can be found in
reference [40].at a value of Davg=1.9, clearly smaller than D=2, as

would be expected for Euclidean clusters. While the Finally, figure 7 (c) depicts the cell gap dependence of
the saturation values of the average fractal dimensionsaturation value of the fractal dimension hints towards

percolation at the percolation threshold, the dynamics Davg obtained from methods 1 to 3. The average fractal
dimension is found to increase from Davg=1.83 for smallof the phase-ordering process may indicate a growth pro-

cess changing from below the percolation threshold at cell gaps of d=2mm to Davg=1.9 for large cell gaps
of d=15mm. In the Davg (d) dependence, saturationshort times (D#1.6) to one at the percolation threshold

(D=1.9) in the long time limit. For such a crossover, behaviour can be observed for cell gaps larger than
approximately d>6mm. This can be attributed to atwo-dimensional percolation theory predicts a change

in the fractal dimension from D=1.56 to D=1.89 [19]. vanishing influence of the substrates on the liquid crystal
phase ordering process. The saturation cell gap ofIt is further worthwhile to point out that different
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7L iquid crystalline fractals

d#6mm is of the same order as is commonly observed
for many other measurements of liquid crystal material
parameters, indicating the sample dimension where
surface-dominated behaviour crosses over to bulk
behaviour. We note that even for much larger cell gaps,
i.e. true bulk material, an average fractal dimension
clearly smaller than D=2 is obtained. This means that
the fractal growth structures observed for banana phases
are not surface-induced, but that fractal growth is indeed
an intrinsic property of liquid crystal phases formed
from bent-core molecules. This may account for the
poor ability of these materials to be oriented uniformly
by any of the common orientation methods. For time-
dependent investigations on the cell gap dependence of
the fractal dimensions we again refer to reference [40].
It is interesting to note that for decreasing cell gaps
confinement effects seem to play an increasing role
in the phase-ordering process, which is also observed
for common calamitic phases [43, 44]. More detailed
studies concerning this behaviour are currently being
carried out.

The growth of the liquid crystal B2 phase from the
isotropic melt is accomplished via the formation of only
very few nuclei. These grow in a complex fashion,
undergo coalescence with proceeding time and in the
long time limit lead to aggregates which span throughout
the whole sample area. For illustration figure 8 shows
an exemplary binary texture image where the red area
was produced with one single area colour fill (by use of
standard image software). This behaviour, together with
the determined average fractal dimensions in the order
of Davg#1.89, being largely independent of the varied
external parameters such as quench depth DT , quench
rate R or sample dimension d (for bulk samples), suggests
that the phase-ordering process of the B2 phase does in
fact represent a percolation system at the percolation
threshold (in the saturation limit). On the molecular
level the driving mechanism for percolation growth of
the B2 phase may be related to a combination of steric
effects and interactions between the local spontaneous

(a)

(b)

(c)
Figure 8. Late time texture image of a growing B2 liquidFigure 7. Dependence of the average fractal dimension Davg for

crystal cluster, illustrating a percolation system at thethe isotropic to B2 phase ordering process on (a) quench
percolation threshold by its fractal dimension of D=1.9depth DT , (b) quench rate R and (c) cell gap d.
and a cluster that spans throughout the whole sample
area (red).
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8 I. Dierking

polarization vectors. At this point we can not give a
molecular model, which will generate a macroscopic
banana-phase percolation cluster, i.e. it is not yet clear
how local interactions are related to the probability of
site occupation in the percolation model, but respective
simulations will be carried out in due time.

3.2. T he liquid crystal B3–crystal B4 transition
Let us now turn to the crystallization of the same

bent-core mesogen as discussed above, i.e. the transition
from the liquid crystalline B3 to the crystal B4 phase.
The growth process of the crystal B4 phase is faster than
that of the liquid crystalline B2 phase and is illustrated
in supplemental video 2.‡ As explained above for video
1, this video does not represent the real time dynamics
of the phase-ordering process, but is merely meant to
serve as an illustrative example. The growth process of
the crystalline B4 phase can be observed between crossed
polarizers as dark B4 areas growing from the ‘sea’ of
the birefringent, bright liquid crystal phase. For the
following investigations it is worthwhile stressing the
point mentioned above concerning the reliability of results
obtained from different methods of fractal dimension
determination. As can be seen in supplemental video 2,
a relatively large number of ‘stray pixels’ (not being part
of a growing aggregate) are observed in the digital,
binary texture images. These lead to errors in the deter-
mined fractal dimensions, which can be quite substantial
in the case of the box dimension method, but are consider-
ably smaller for the information dimension method and
the mass dimension method. This will become apparent
from the results presented below, keeping in mind that
for ideal objects we should obtain Db=Dm and Di�Db .

(a)

 (b)
The Db values are included in the figures presented Figure 9. Time development of fractal dimensions (a) Db , Dibelow, only to illustrate that the very popular and often and D

m
, related to covered cluster area and (b) Dp and Dr ,

related to the cluster perimeter for the B4 crystallizationemployed box dimension method may not give reliable
process.results for all experimental situations, even though a

small standard deviation of a linear fit (on a log–log
scale) might be obtained. In the following, we will limit errors caused by the ‘stray pixels’. An average saturation

value of the information dimension and the mass dimen-our presentation of experimental results for the crystal-
lization process to those obtained on single growth sion is obtained as Davg=1.9 and we note that this is

equivalent to the dimensions obtained for the liquidaggregates. Further data for an analysis of whole textures
can be found in reference [41]. crystalline B2 phase, which we related to a percolation

system. Investigating a single aggregate, i.e. a closedFigure 9 (a) depicts the time development of the fractal
dimensions related to the covered area of the B4 growth loop or an ‘island’, we can also employ fractal dimension

methods related to the perimeter of the growth aggregateaggregate, namely the box dimension Db (squares), the
information dimension D

i
(circles) and the mass dimen- (figure 9 (b) ), namely the determination of the area–

perimeter dimension Dp (down triangles) and the rulersion D
m

(up triangles). In all cases the fractal dimension
quickly reaches saturation, but relating to our discussion dimension Dr (diamonds). For Euclidean objects both

of these dimensions should be equal to 1. This isabove, we note that D
i

and D
m

exhibit approximately
equal values, while Db is considerably smaller, due to clearly not the case as demonstrated in figure 9 (b) with

Dp#1.35 and Dr#1.25 and we can conclude that also
the perimeter of the crystal B4 aggregates shows fractal‡Please see the Supplemental Materials section to download

this video. growth features.
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9L iquid crystalline fractals

Variation of the quench depth DT does not have any
significant influence on the crystal growth structures,
as demonstrated in figure 10. Figure 10 (a) depicts the
quench depth dependence of the fractal dimensions
related to the covered area of the growth aggregate (Db :
squares, D

i
: circles and D

m
: up triangles, with values of

Db being too small due to stray pixels), while figure 10 (b)
shows those related to the perimeter of a single aggregate
(Dp : down triangles and Dr : diamonds). Again, we find
an average value of the information dimension and
the mass dimension of Davg=1.9 while Dp#1.35 and
Dr#1.25.

Figure 11 depicts the cell gap dependence of fractal
dimensions determined by various methods up to a cell
gap of d=6mm. For larger substrate spacing the crystal-
lization process does not proceed in two dimensions and

(a)

(b)

Figure 11. Cell gap dependence of fractal dimensions (a) Db ,
D
i
and D

m
, related to covered cluster area and (b) Dp and

Dr , related to the cluster perimeter for the B4 crystallization
process.

the crystal clusters are not uniformly black. This means
that these textures cannot be used for a fractal analysis,
because they cannot unambiguously be converted to
binary digital images. Figure 11 (a) shows the cell gap
dependence of the fractal dimensions related to the
covered area of a single growth aggregate. An average
dimension obtained from the information and the mass
method gives Davg#1.88 for d=6 mm, while again Dp#
1.35 and Dr#1.25 (figure 11 (b) ). The crystallization
process is accomplished much faster for increasing cell
gap and time-dependent fractal dimensional data can be

(a)

(b)
found in reference [41].

Figure 10. Quench depth dependence of fractal dimensions
Also for the phase-ordering process from the liquid(a) Db , Di and D

m
, related to covered cluster area and

crystalline to the crystal state, fractal growth aggregates(b) Dp and Dr , related to the cluster perimeter for the B4
crystallization process. can be observed, which in the late time limit basically
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